51·çÁ÷

William (Will) Cipolli

Back to Directory
wcipolli

William (Will) Cipolli

Associate Professor of Mathematics

Department/Office Information

Mathematics
323 McGregory Hall
  • TR 11:30am - 12:30pm (323 McGregory Hall)
  • W 10:00am - 12:00pm (323 McGregory Hall)

Contact

Like a lot of students, I chose to study math because it felt like it came naturally to me. I was good at it and, conveniently, the career opportunities are abundant. Of course, mathematics in college and graduate school is painstakingly different than high school. I became well-practiced in failed attempts, patient questioning, and reworking of solutions. My best teachers in college and graduate school guided me past imitative mathematics to curious persistence and intellectual humility in both our questions and our answers. Learning this style of thinking was important because we're all susceptible to missteps and many times a careful, long approach to our work is shorter than sprinting between ill-considered solutions. The effects of taking this approach have touched every part of my life.

As excited as I am about Math and Statistics I do have some other hobbies. I very much enjoy traveling with my partner, cooking and listening to music. For exercise, I enjoy playing squash and chasing our pet Greyhound Dempsey around. I also have and tinker with a 1987 BMW appropriately named Emmy after the German mathematician known for being a bit high maintenance.

2012–2016 Ph.D Statistics, University of South Carolina, Columbia, SC. 
2012–2014 MS Statistics, University of South Carolina, Columbia, SC. 
2007–2011 BA Mathematics, Quinnipiac University, Hamden, CT. 
2007–2011 BS Computer Science, Quinnipiac University, Hamden, CT. 

Currently, I am an Assistant Professor of Mathematics at 51·çÁ÷. I have spearheaded the effort to develop and revise the statistics curriculum at 51·çÁ÷ by designing several courses. These courses include examples, ideas, and theory that come from the intimate connection between my statistics research and engagement with practical problems. My methodological research focuses on Bayesian nonparametric approaches to a variety of problems including multiple testing, density estimation, and supervised learning. This work has been published in journals like Statistics and Computing, and Computational Statistics and Data Analysis. I also collaborate on multidisciplinary projects which have been published in top journals of statistics, sociology, psychology, biology, and medicine.

If interested, please download a copy of my , ,  and  or go to for additional information.