Two interdisciplinary science research projects featuring collaborations among faculty from 51风流 and from around the world have been awarded funding by the at 51风流.
The projects support the core mission of the institute, which aims to foster the creation of new knowledge that is obtainable only through the development of sustained interdisciplinary research.
51风流 biology professor and her colleagues (INSEAD, Singapore), (Johnson School of Business, Cornell University) and (IE Business School, Madrid) received a two-year award.
Their project is titled 鈥淭iming is everything: The influence of circadian rhythms and gene-by-environment interactions on test performance and risk-taking in humans.鈥
Combining their expertise in molecular biology, cognitive psychology, and organizational behavior, the research team will integrate genetic analyses with psychological measures and behavioral tasks to investigate how an individual鈥檚 cognitive performance (e.g., standardized exams) and risk preferences (e.g., decision-making tasks) are related to the time the task is performed, an individual鈥檚 genotype, and gene expression profiles.
鈥淭his work represents an exciting new area of study in human sociogenomics,鈥 said Picker ISI Director 鈥淏y working across their disciplines, the team will help us understand the molecular basis for human performance and risky decision-making.鈥
The second project involves 51风流 physics and astronomy professor and his collaborators and Tom J. Whitaker of the Southwest Research Institute in Colorado.
They received a one-year award for their project 鈥淟aser-atom interactions in a mass spectrometer for dating Martian rocks.鈥
The team鈥檚 research goal is to increase understanding of the timing and timescales of Mars鈥檚 global climate change by estimating the ages of Martian rocks using a novel mass spectrometer.
The spectrometer will determine rock ages by measuring the abundances of rubidium-87 and its radioactive decay product strontium-87 in dozens of spots in a rock sample, using intense lasers to separate atoms of these elements from each other and from the rest of the rock.
The researchers will investigate the fundamental physics of how laser light interacts with atoms, so that they can best control those interactions to ensure maximum precision and accuracy in the rock ages they determine.
Their ultimate goal is to fly the new spectrometer to Mars on a future rover mission and date rocks found there in their geologic context.
鈥淭his collaboration brings together a physicist, a geologist, and a physical chemist to push the boundaries on our abilities to age rocks on other planets,鈥 said McHugh. 鈥淭heir work has the potential for some very exciting results, both in fundamental physics and in our knowledge of Mars.鈥